Introduction to Flow Chart Proofs

A **flow chart** proof is a concept map that shows the statements and reasons needed for a proof in a structure that helps to indicate the logical order. Statements, written in the logical order, are placed in the boxes. The reason for each statement is placed under that box.

- 1. a. Cut out the individual boxes of statements and reasons at the bottom of the page.
 - b. Arrange the statements and reasons to prove the following conditional:

If
$$3x 15 = 150$$
 then $x = 55$.

c. Copy the statements and reasons in the proper order on the flowchart displayed below. Place the statements in the boxes and the reasons on the lines below the boxes.

- d. What is the statement in the first box? How does it relate to the conditional?
- e. What is the statement in the last box? How does it relate to the conditional?

Lesson Plan: Different Methods of Proof

2. Prove the following conditional:

If
$$\frac{4x}{7} = 24$$
, then $x = 42$.

a. The statements are already entered into the flowchart. Write the correct reasons below each box.

- b. What is the statement in the first box? How does it relate to the conditional?
- c. What is the statement in the last box? How does it relate to the conditional?
- 3. Prove the following conditional:

If
$$3x + 28 = 58$$
, then $x = 10$.

Write the correct statements and reasons in the flowchart to prove the conditional above.

4. Given the conditional:

If
$$5x 12 = x 32$$
, then $x = -5$.

Write the correct statements and reasons in the flowchart to prove the conditional above.

Lesson Plan: Different Methods of Proof

5. The flowchart proof can be used to show the logical process in a proof of a geometric idea. For example, given the following conditional:

If 1 and 2 are supplementary and 2 3, then m + 1 + m + 3 = 180.

a. State the given and prove for this conditional.

Given:

Prove:

- b. Sort the slips of paper from the envelope into statements and reasons. Then arrange the statements and reasons on the flowchart to give a logical proof of the conditional.
- c. What is the statement in the first box? How does it relate to the conditional?
- d. What is the statement in the last box? How does it relate to the conditional?
- 6. Prove the following conditional:

If m = 1 = m = 2, then m = AEC = m = BED.

a. State the given and prove for this conditional.

Given:

Prove:

- b. Sort the slips of paper from the envelope into statements and reasons. Then arrange the statements and reasons on the flowchart to give a logical proof of the conditional.
- 7. Prove the following conditional:

If \overline{PR} and \overline{QS} bisect each other at T, then $\Delta PQT \cong \Delta RST$.

a. State the given and prove for this conditional.

Given:

Prove:

b. Sort the slips of paper from the envelope into statements and reasons. Then arrange the statements and reasons on the flowchart to give a logical proof of the conditional.

Lesson Plan: Different Methods of Proof

8. Prove the following conditional:

If \overline{PR} and \overline{QS} bisect each other at T, then $\angle P \cong \angle R$.

a. Complete the following:

Given:

Prove:

- b. Mark the information that is given on the diagram.
- c. Complete the missing parts of the flow chart proof.

Lesson Plan: Different Methods of Proof

- 9. If A and B are complementary and B and C are complimentary, then A C.
 - a. Draw a diagram for this conditional.
 - b. State the given and prove for this conditional in terms of the diagram.

Given:

Prove:

Page 5

c. Fill in the missing reasons in the flowchart below.

Statements and Reasons for problem 5 flowchart proof

1 and 2 are supplementary	Given	
m 1 + m 3 = 180	Definition of congruent angles	
m + 1 + m = 2 = 180	Substitution property of equality	
2 3	Definition of supplementary angles	
m 2 = m 3	Given	

Statements and Reasons for problem 6 flowchart proof

m 1 = m 2	Angle addition postulate
m + m = 3 = m + 2 + m = 3	Substitution property of equality
m AEC = m 1 + m 3 $m BED = m 2 + m 3$	Given
m AEC = m BED	Addition property of equality

Statements and Reasons for problem 7 flowchart proof

PR and QS bisect each other at T Given		
$\overline{PT} \cong \overline{TR}$	Vertical angles are congruent	
$\overline{QT} \cong \overline{TS}$	Definition of bisector	
∠PTQ≅∠RTS	Side-Angle-Side Congruence	
$\Delta PQT \cong \Delta RST$	Definition of bisector	

Lesson Plan: Different Methods of Proof

Introduction to Flow Chart Proofs (Continued) Flowchart for problem 6

Lesson Plan: Different Methods of Proof Page 7

Flowchart for problem 5

Lesson Plan: Different Methods of Proof Page 8

- Answers: 1. c. $3x-15=150 \rightarrow 3x=165 \rightarrow x=55$ Given Addition Division Equation Property Property of Equality of Equality
 - d.-e. The first box is the 'if' statement and the last box is the 'then' statement.
 - 2. a. Given → Multiplication Property of Equality → Division Property of Equality
 - b.-c. The first box is the 'if' statement and the last box is the 'then' statement.
 - 3. 3x+28=58 \Rightarrow 3x=30 \Rightarrow x=10Given Subtraction Division

 Equation Property Property

 of Equality of Equality
 - 4. $5x-12=x-32 \rightarrow 4x-12=-32 \rightarrow 4x=-20 \rightarrow x=-5$ Given Subtraction Addition Division Equation Property Property Property of Equality of Equality
 - 5. a. Given: $\angle 1$ and $\angle 2$ are supplementary $\angle 2 \cong \angle 3$ Prove: $\angle 1 + \angle 3 = 180^{\circ}$

b.

	0.			
1 and 2 are supplementary	m + 1 + m + 2 = 180	2 3	m 2 = m 3	m 1 + m 3 = 180
Given	Definition of supplementary angles	Given	Definition of congruent angles	Substitution property of equality

- c.-d. The first box is the 'if' statement and the last box is the 'then' statement.
- 6. a. Given: $m \angle 1 = m \angle 2$ Prove: $m \angle AEC = m \angle BED$

b.

_				
	m 1 = m 2	m + m = 3 = m + 2 + m = 3	$m ext{ AEC} = m ext{ 1 + m } ext{ 3} m ext{ BED} = m ext{ 2 + m } ext{ 3}$	m AEC = m BED
	Given	Addition property of equality	Angle addition postulate	Substitution property of equality

7. a. Given: \overline{PR} and \overline{QS} bisect each other at T

Prove: $\triangle PQT \cong \triangle RST$

$\overline{PT} \cong \overline{TR}$
Definition of bisector

PR and QS bisect each other at T	$\overline{QT} \cong \overline{TS}$	$\Delta PQT \cong \Delta RST$
Given	Definition of bisector	Side-Angle-Side Congruence

∠PTQ ≅ ∠RTS

Vertical angles are congruent

8. a. Given: \overline{PR} and \overline{QS} bisect each other at T

Prove: $\angle P \cong \angle R$

c. Reasons:

	Definition of Bisector	
Given	Definition of Bisector	Side-angle-side Triangle
		Congruency
	Definition of Vertical	
	Angles	

9. Given: A and B are complementary

B and C are complimentary

Prove: A C

c.

A and	B are	
complem	entary	
Give	en	

B and	C are
complim	entary
Give	en

$$A + B = 90^{\circ}$$
Definition of
Complementary Angles

$B + C = 90^{\circ}$
Definition of
Complementary Angles

A +	B =	B +	C	
Transitive Property of				
Equality				

$B \cong$	В	
Reflexive Property of		
Congrue	ence	

A ≅	С
Subtraction	Property